Classification of Epileptic EEG Signals using Time-Delay Neural Networks and Probabilistic Neural Networks

نویسندگان

  • Ateke Goshvarpour
  • Hossein Ebrahimnezhad
  • Atefeh Goshvarpour
چکیده

The aim of this paper is to investigate the performance of time delay neural networks (TDNNs) and the probabilistic neural networks (PNNs) trained with nonlinear features (Lyapunov exponents and Entropy) on electroencephalogram signals (EEG) in a specific pathological state. For this purpose, two types of EEG signals (normal and partial epilepsy) are analyzed. To evaluate the performance of the classifiers, mean square error (MSE) and elapsed time of each classifier are examined. The results show that TDNN with 12 neurons in hidden layer result in a lower MSE with the training time of about 19.69 second. According to the results, when the sigma values are lower than 0.56, the best performance in the proposed probabilistic neural network structure is achieved. The results of present study show that applying the nonlinear features to train these networks can serve as useful tool in classifying of the

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of ECG signals using Hermite functions and MLP neural networks

Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...

متن کامل

A hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine

Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...

متن کامل

Real Time Driver’s Drowsiness Detection by Processing the EEG Signals Stimulated with External Flickering Light

The objective of this study is development of driver’s sleepiness using Visually Evoked Potentials (VEP). VEP computed from EEG signals from the visual cortex. We use the Steady State VEPs (SSVEPs) that are one of the most important EEG signals used in human computer interface systems. SSVEP is a response to visual stimuli presented. We present a classification method to discriminate between...

متن کامل

An Empirical Analysis of Different Machine Learning Techniques for Classification of EEG Signal to Detect Epileptic Seizure

Electroencephalogram (EEG) signal is a modest measure of electric flow in a human brain. It is responsible for information flow through the neurons in the brain which controls and monitors the full torso. Hence, to widening and in-depth understanding of effectiveness in EEG signal analysis is the primary focus of this paper. Moreover, machine learning techniques often proven as more efficacious...

متن کامل

A Unique Approach to Epilepsy Classification from EEG Signals Using Dimensionality Reduction and Neural Networks

Characterized by recurrent and rapid seizures, epilepsy is a great threat to the livelihood of the human beings. Abnormal transient behaviour of neurons in the cortical regions of the brain leads to a seizure which characterizes epilepsy. The physical and mental activities of the patient are totally dampened with this epileptic seizure. A significant clinical tool for the study, analysis and di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013